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Abstract

Several resins have reportedly been used to synthesize hydroxamic acids except for the hydroxythiophenol (Marshall) resin. Herein,
we report the use of the Marshall resin to synthesize hydroxamic acids from carboxylic acids and its application to convert a library of 14
discrete aliphatic and aromatic carboxylic acids including N-protected amino acids to their corresponding hydroxamic acids in good
yields.
� 2007 Elsevier Ltd. All rights reserved.
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Hydroxamic acids are known as zinc coordinators that
have been widely used as zinc protease inhibitors.1–11 In
the course of developing small-molecule inhibitors of the
zinc endopeptidase of botulinum neurotoxin serotype A
(BoNTA),12,13 we needed a method to convert a library
of discrete carboxylates immobilized on the hydroxythio-
phenol (Marshall) resin to hydroxamates to derivatize
our hydroxamate-containing BoNTA inhibitors using
split-and-pool combinatorial synthesis.14,15 Several resins
have reportedly been used for the syntheses of hydroxamic
acids and these include (1) the thioester-attached resin,16

(2) the O-immobilized-hydroxylamine-containing Wang
resin,17–22 (3) the oxime (Kaiser) resin,23 (4) the N-hydroxy-
benzenesulfonamide-attached resin,24 (5) the trityl
resin,25,26 (6) the chlorotrityl resin,27 and (7) the HMBA-
AM resin.28 However, the Marshall resin has not been
reported for its use in synthesizing hydroxamic acids.

The reports of facile cleavage of amides from the Mar-
shall resin by primary or secondary amines using pyridine
as a swelling solvent29–38 prompted us to investigate the
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feasibility of obtaining hydroxamic acids from carboxyl-
ates immobilized on the Marshall resin using hydroxyl-
amine as a cleavage agent (Scheme 1). On converting
2-(thiophen-3-yl)acetate immobilized on the Marshall resin
to N-hydroxy-2-(thiophen-3-yl)acetamide (Scheme 1), we
obtained the desired pure product when cleaving the ace-
tate from the Marshall resin using 50% hydroxylamine
aqueous solution in pyridine and using high-performance
HOHNOC
S

2
DCM, r.t., 24 h

96% yield for the 
crude product
74% purity

Scheme 1. Syntheses of amides and hydroxamic acids using the Marshall
resin.
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Scheme 2. Syntheses of hydroxamic acids using the Marshall resin.
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liquid chromatography (HPLC) purification. However, the
crude product was in a mixture (nearly 1:1 ratio) with the
corresponding carboxylic acid that was generated presum-
ably by water in the presence of pyridine during the cleav-
age. To avoid the formation of the carboxylic acid, we
performed the cleavage by using 50% hydroxylamine aque-
Table 1
Syntheses of a library of discrete hydroxamic acids using the Marshall resin

Entry Starting material Product

1

S

CO2H

S

CON

2 Ph
CO2H

Ph
CONH

3
MeO CO2H MeO

4
CO2H CONH

5
CO2H

NHCbz NH

6 CO2H

7 Br CO2H Br

8 CbzHN CO2H CbzHN

9 CbzHN CO2H CbzHN

10
CO2H

NHCbz

CO

NHCb

11

HN NHAc

CO2H

HN

12
N

CO2H

N

CON

13
N
H

HO2C HOHNOC

14 N
H

CO2H
N
H

a The yield for the crude product was calculated according to the capacity o
b Purity was estimated according to the integration (area %) of the HPLC ch

analysis condition: Zorbax SB C-18 4.6 � 250 mm, 1.0 mL/min, and linear gr
20 min, A = H2O (0.1% TFA), B = CH3CN/H2O 9:1 (0.1% TFA)].

c The same amount of the product was obtained when toluene was used as
d Linear gradient: the concentration of B in A was changed from 0% to 2%
ous solution in dichloromethane (DCM) or toluene and
readily obtained the desired hydroxamic acid without con-
tamination by the carboxylic acid according to the proton
NMR spectrum of the crude hydroxamic acid.

Further studies showed that the new method of convert-
ing carboxylates to hydroxamates shown in Scheme 239 is
applicable to both aromatic and aliphatic acids including
N-protected amino acids. This method can be used for
the synthesis of a library of discrete hydroxamic acids
(Table 1). For the synthesis of a library of 14 discrete,
representative hydroxamic acids listed in Table 1, only
1H-indole-5-carboxylic acid (entry 13) had a low yield of
Yielda (%) Purityb (%)

HOH
96 74

OH 63c 97

CONHOH
80 94

OH
71 88

CONHOH

Cbz
82 91

CONHOH 50 79

CONHOH 100 95

CONHOH 100 94

CONHOH 92 91

NHOH

z
87 85

NHAc

CONHOH 100 81

HOH
86 85d

N
H

33 92

CONHOH 67 93

f the resin.
romatogram at 254 nm with correction of the methanol peak. The HPLC
adient [the concentration of B in A was changed from 20% to 100% over

a swelling solvent.
over 20 min.
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33% while others had yields of 50–100%. Purities of the
products cleaved from the Marshall resin were 74–97%
according to HPLC analysis. Liquid-chromatography–
mass-spectrometry analyses of the 14 crude products listed
in Table 1 showed that all products were free of starting
materials except that hydroxamic acids of entries 8 and
12 were contaminated, respectively, by 2% and 15% of cor-
responding carboxylic acids that can be readily separated
from the hydroxamic acids by HPLC.

The above results show that the Marshall resin is a use-
ful solid-phase support for converting a wide range of car-
boxylic acids to hydroxamic acids by using split-and-pool
combinatorial method.14,15 The Marshall resin can yield
directly a hydroxamic acid, unlike the thioester-attached
resin that requires the use of NH2OTMS and needs an
extra step of deprotection after obtaining the O-protected
hydroxamic acid. The convenient synthesis of a library of
discrete hydroxamic acids using the Marshall resin demon-
strated herein is useful to the syntheses of hydroxamate-
containing inhibitors of metalloproteins involved in many
diseases such as cancers,5 cardiovascular diseases,6–8

AIDS,9,10 and Alzheimer’s disease.11
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N-Hydroxy-2-(thiophen-3-yl)acetamide (entry 1): d 10.61 (s, 1H), 8.81
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N-Hydroxy-3-methoxybenzamide (entry 3): d 11.0 (br s, 1H), 9.1 (br s,
1H), 7.48–7.27 (m, 3H), 7.06 (m, 1H), and 3.77 (s, 3H).
N-Hydroxybenzamide (entry 4): d 11.20 (s, 1H), 9.02 (s, 1H), 7.74–7.71
(m, 2H), and 7.52–7.41 (m, 3H).
Benzyl 1-(hydroxyamino)-1-oxo-3-phenylpropan-2-ylcarbamate (entry
5): d 10.71 (s, 1H), 8.87 (s, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.34–7.13 (m,
10H), 4.95 (s, 2H), 4.09 (m, 1H), 2.87 (dd, J = 13.6, 4.9 Hz, 1H), and
2.76 (dd, J = 13.6, 3.5 Hz, 1H).
4-tert-Butyl-N-hydroxybenzamide (entry 6): d 11.1 (br s, 1H), 8.9 (br s,
1H), 7.66 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), and 1.27 (s, 9H).
4-Bromo-N-hydroxybenzamide (entry 7): d 11.6 (br s, 1H), 9.32 (br s,
1H), 8.29 (d, J = 8.8 Hz, 2H), and 7.97 (d, J = 8.8 Hz, 2H).
Benzyl 6-(hydroxyamino)-6-oxohexylcarbamate (entry 8):d 10.32 (s,
1H), 8.65 (s, 1H), 7.34 (m, 6H), 4.98 (s, 2H), 2.94 (m, 2H), 1.90 (t,
J = 7.2 Hz, 2H), 1.45 (m, 2H), 1.36 (m, 2H), and 1.20 (m, 2H).
Benzyl 4-(hydroxyamino)-4-oxobutylcarbamate (entry 9): d 10.34 (s,
1H), 8.75 (br s, 1H), 7.37–7.25 (m, 6H), 4.98 (s, 2H), 2.96 (m, 2H), 1.93
(t, J = 7.5 2H), and 1.60 (m, 2H).
Benzyl 1-(hydroxyamino)-4-methyl-1-oxopentan-2-ylcarbamate (entry
10): d 10.66 (s, 1H), 8.80 (br s, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.37–7.27
(m, 5H), 4.99 (s, 2H), 3.90 (m, 1H), 1.56–1.31 (m, 3H), 0.85 (d,
J = 6.6 Hz, 3H), and 0.81 (d, J = 6.6 Hz, 3H).
2-Acetamido-N-hydroxy-3-(1H-indol-3-yl)propanamide (entry 11): d
10.78 (s, 1H), 8.8 (br s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.57 (d,
J = 7.8 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 7.03
(m, 1H), 6.95 (m, 1H), 6.44 (br s, 1H), 4.40 (m, 1H), 3.02 (dd, J = 14.4,
5.9 Hz, 1H), 2.85 (dd, J = 14.4, 8.8 Hz, 1H), and 1.75 (s, 3H).
N-Hydroxyisonicotinamide (entry 12): d 11.40 (s, 1H), 9.22 (br s, 1H),
8.90 (s, 1H), 8.69 (d, J = 4.3 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), and 7.49
(dd, J = 8.0, 3.1 Hz, 1H).
N-Hydroxy-1H-indole-5-carboxamide (entry 13): d 11.31 (s, 1H), 11.2
(s, 1H), 8.82 (br s, 1H), 7.99 (s, 1H), 7.50 (dd, J = 8.6, 1.6 Hz, 1H), 7.40
(m, 2H), and 6.49 (m, 1H).
N-Hydroxy-1H-indole-2-carboxamide (entry 14): d 11.63 (s, 1H), 11.25
(br s, 1H), 9.1 (br s, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 8.2 Hz,
1H), 7.15 (m, 1H), 7.01 (m, 1H), and 6.96 (s, 1H).
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